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Abstract: A rigorous investigation of the numerical cost of
sensitivity analysis (gradient computation) of complex
structures within Moment Method is presented. It is shown
that, when the number of variables N used in the analysis is
large, a common situation in complex structures, the ratio r
of the number of flops required to evaluate the sensitivity of
the response to structural changes to the number of flops
required to determine the response at a single point is such
that r=O(1/N) as long as the number of flops required to fill
the matrix is not dominant. For the latter important case, a
new boundary layer concept is introduced to reduce the
CPU time for the gradient computation. A simple example
of an iris in a rectangular waveguide is used to illustrate the
concept and show its validity.

I. Introduction

The complexity of  modern microwave structures
makes them impossible to tackle within analytical or
even semi-analytical numerical techniques. General
numerical techniques such as the Method of Moment
(MoM) or the Finite Element Method (FEM)  are
often resorted to [1].

Although design formulas for simple systems are
available, actual designs of modern structures are
often finalized by optimization and eventually tuned
experimentally to compensate for manufacturing
tolerances. It is commonly accepted that the most
efficient optimization techniques are those that
exploit not only the values of the cost function but its
gradient as well. The computation of the gradient is
often carried out using finite differences where the
structure is analyzed an additional time for each
independent variable. It should be obvious that this
approach is viable only when the requirements of an
analysis in terms of CPU times and computer
memory are reasonably small.
   It was recently shown that the gradient of the
response of a linear systems analyzed within

numerically intensive techniques can be
determined directly from a single analysis [2]. A
similar technique was applied to inverse scattering
problem using the Finite Element Method (FEM)
[3].  The adjoint network method was also used in
the optimization of both radiating and guiding
structures by Mongiardo and coworkers [4], [5].
In this paper, we propose to further show that the
numerical cost of evaluating the gradient of an
already determined response becomes negligibly
small in comparison with the cost of computing
the response (solution) itself when the number of
variables is large provided the time it takes to fill
the matrix is not dominant. For this case, a new
boundary-layer concept to reduce the CPU time is
introduced.

II. Statement of the Problem

We focus attention on a linear system whose
response [x] (vector of length N) is related to the
corresponding excitation [b] (vector of length N)
by a matrix equation of the form

              [A][x] = [b]                                       (1)

The system is represented in this equation by the
matrix [A] of size N x N. This formulation is quite
general and is often encountered in the Method of
Moments (MoM). The specific forms of the
entries of this matrix depend on the physical and
geometrical parameters of the system and method
of analysis. The vector [x] contains the expansion
coefficients in the MoM. Let us denote by [α]^t =

],....,,[ 21 pααα  a vector of size p which contains

the optimization variables iα . We focus
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specifically on the Method of Moments, or those
leading to a full matrix [A].
The first question we are addressing is the following:
what is the additional numerical cost of
evaluating the gradient of [x] at a given point
with respect of [α] when N is large once the
solution is known at the same point?
We purposely consider the case of large values of N
which corresponds to modern complex structures
where N can be of the order of tens or hundreds of
thousand and even more.

III. Cost Within Standard Finite
Differences

We first assume that the gradient is determined using
finite differences. Within this approach, the response
is first determined at a value of the parameter vector
[α]. For each of the p parameters at least an
additional analysis is performed.  Since each analysis
requires the solution of a linear system [A][x]=[b], a

3

3N
 operation, the overall additional cost is

               
3

3pN
CFD =                                            (2)

IV. Cost Using Analytical Gradient

The gradient of the response [x] can be determined
from the following identity [3]
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][                                     (3)

Since we assumed that the solution is already known,
we know the LU decomposition of the matrix [A].
The total additional cost within this approach
consists of the following operations:

1. Multiplication of 
i

A

α∂
∂ ][

 and [x], 2N→ .

2. Forward and backward substitution in equation
    (3), 2N→ .

These operations are performed once for each of
the p parameters. The total additional cost is
therefore,
          2

. 2 pNCanalyt =                                        (4)

V. Discussion

It is interesting to compare the two costs for
typical values of p and N. We assume that the
number of parameters is p=10 and the number of
variables is N=1000. Let us denote by r the ratio

        006.0
500

3. ===
FD

analyt

C

C
r                          (5)

In other words, the additional cost within the
analytical gradient approach is negligible
compared to the standard finite difference method.
We stress again that these results are derived
assuming that N is large and that the matrix [A] is
full.

It should be mentioned that a similar analysis for
electrical circuits was presented by Bandler and
coworkers [6]. The present paper shows that their
results can be extended to more complex
structures which are analyzed by modern
numerical techniques. Another important point is
the applicability of the present results to methods
leading to sparse matrices, such as the FEM or
FDFD. For those methods, solving a linear system
[A][x]=[b] is not as costly as  N3/3 if the sparsity
of the matrix [A] is exploited. The present results
may not hold in general in these sparse cases.

It may be also worth pointing out that the matrix

i

A

α∂
∂ ][

 is usually very sparse, this feature can be

used to reduce further the additional cost within
the analytical approach. This, however, comes at
the price of book keeping and may not be
necessary unless the cost of filling the matrix [A]
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is dominant. In such a case, the results presented
here do not hold as they assume that the cost
of filling the matrix is at most an N2 operation.
Specific techniques to compute derivatives
efficiently for this case are presented below.

VI. Boundary-Layer Concept

For complex structures analyzed by the moment
methods, one is often faced with the task of
evaluating time consuming integrals numerically. In
such cases, the dominant part of the CPU time is
absorbed by the computation of the matrix [A] and
not its inversion. Obviously, the computation of the
gradient under these conditions can be extremely
expensive in terms of CPU times. To deal with this
important situation, we introduce the following idea.

Figure 1a shows a generic computational domain,
which is assumed 1D for simplicity, of length L=L0.
In the MoM analysis of this domain, the length L is
divided into N equal segments of length L/N and
appropriate basis functions such as pulse or rooftop
are used on each one. Let us denote by R(L0) the
response of the structure when L=L0.

                               L0

a) L0/N L0/N                                         L0/N  L0/N

                                      L0+δL

b) L0/N L0/N                                         L0/N L0/N+δL
                                          boundary layer

c)              L0-Lbl                         Lbl

Figure 1: computational domain of length L0.a) discretization
for MoM analysis, b) inclusion of perturbation δL and c)
boundary layer of thickness Lbl.

The question we address is the following:  is it
possible to determine the response R(L0 +δL),
δL   → 0 without perturbing each of the N
segments?

Let us examine the following situation as shown
in Figure 1b. Keep the support of the first N-1
segments equal to their previous value L0/N and

allow the last one to have a length L
N

L
lnew δ+= 0 .

The question is then whether the response
obtained from this new distribution is an
expression of R(L=L0+δL) for δL → 0.
Obviously, the answer is in the affirmative if the
discretization leads to the exact response.
However, we do not expect to have an exact
description of the response (or the fields). The
discretization will introduce errors in the response
which may reduce the accuracy of  the computed
perturbed response. To reduce this error, we allow
more segments to change, say those falling within
a layer of thickness Lbl as shown in Figure 1c. We
call the layer of thickness Lbl  a boundary layer
since most often the dominant physics takes place
close to the boundaries which are changed in an
optimization process. It is important to note that
using the idea of a boundary layer, only a fraction
of the entries of the matrix [A] will be affected by
the change δL. Since we assumed that computing
these entries is dominant, a tremendous reduction
in CPU time can be achieved.

As an example, we consider an infinitely thin H-
plane iris in a rectangular waveguide as shown in
Figure 2.

                                                     zero thickness H-plane iris

                  a
                                                                      TE10

                                            a1

Figure 2: cross section of zero thickness H-plane iris in a
rectangular waveguide.
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We would like to determine the width of the aperture
such that half of the power incident in the dominant
TE10 mode is reflected at 12  GHz. The problem is
formulated in terms of an   integral equation for the
aperture field. Pulse functions are used as basis and
test functions. To determine 1a , Newton’s method is

used starting from the point 1a = 0.65 a. The number
of  cells in the boundary layers is changed and
solution recorded. The total number of basis
functions is 60 and a = 19.05 mm. Table I shows the
results.

Table I: start a1/a = 0.65

Cells in boundary layer Solution a1/a
1 0.582
2 0.582
3 0.582
5 0.582
10 0.582
15 0.582

It is evident that a boundary layer which contains
even one cell  is sufficient to accurately determine
the optimal value of 1a using Newton's method
which is very sensitive to the value of the gradient
(derivative in this simple case). The approach
performs not as well when the starting value is 1a =
0.8 a instead as Table II shows.

Table II: start a1/a = 0.80

Cells in boundary layer Solution a1/a
1 diverges
2 diverges
3 diverges
5 diverges
10 0.582
15 0.582

In this case, a boundary layer of 10 cells or more is
required to achieve convergence. Of course, the
potential saving in CPU time is much more
substantial in complex structures where a large
number of variables is used.

VII. Conclusions

The cost of computing the gradient of the
response of complex linear systems analyzed by
the Method of Moments can be reduced to a
negligible fraction of the cost of a single analysis
when the number of variables is large provided
that the CPU time required to fill the matrix is not
dominant. When this is not the case, the concept
of a boundary layer which absorbs the differential
changes was introduced.

VIII. References

1. T. Itoh Ed., Numerical Techniques for Microwave
and Millimeter-Wave Passive Structures , Wiley, New
York 1989.

2. S. Amari, P. Harscher, R. Vahldieck and J.
Bornemann, Novel Analytic gradient  evaluation
techniques for optimization of microwave structures,
IEEE MTT-S  Int. Symp. Dig., Anaheim 1999, pp. 31-
34.

3. I. T. Rekanos and T. D. Tsiboukis, A combined
finite element -nonlinear conjugate gradient method
for the reconstruction of unknown scatterer profiles,
IEEE Tran. Magnetics, vol. 34, pp. 2829-2832, Sept.
1998.

4. M. Mongiardo and T. Ravanelli, Automated design
of corrugated feeds by the adjoint network method,
IEEE Tran. Microwave Theory Tech., vol. 45, pp.
787-792, May 1997.

5. F. Alessandri, M. Mongiardo and R. Sorrentino,
New efficient full wave optimization of microwave
circuits by the adjoint network method, IEEE Guided
Wave Lett., vol, 3, pp. 414-416, Nov. 1993.

6. J. W. Bandler, S. H. Chen and S. Daijavad, Exact
sensitivity analysis for  optimization of multi-coupled
cavity filters, Jour. Circuit Theory Appl., vol. 31,  63-
77, 1986.

0-7803-6540-2/01/$10.00 (C) 2001 IEEE


	IMS 2001
	Return to Main Menu


